US009463089B2 ## (12) United States Patent #### Brown et al. # (54) PLUNGER SYSTEM FOR INTRAOCULAR LENS SURGERY (75) Inventors: **Kyle Brown**, Fort Worth, TX (US); David Anthony Downer, Fort Worth, TX (US) (73) Assignee: **NOVARTIS AG**, Basel (CH) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (2013.01) U.S.C. 154(b) by 83 days. (21) Appl. No.: 13/476,556 (22) Filed: May 21, 2012 #### (65) Prior Publication Data US 2013/0310843 A1 Nov. 21, 2013 (51) Int. Cl. A61F 2/16 (2006.01) (58) Field of Classification Search #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,681,102 | A | 7/1987 | Bartell | |-----------|---|---------|-----------------| | 4,765,329 | A | 8/1988 | Cumming et al. | | 4,852,566 | A | 8/1989 | Callahan et al. | | 5,195,526 | A | 3/1993 | Michelson | | 5,275,604 | A | 1/1994 | Rheinish et al. | | 5,425,734 | A | 6/1995 | Blake | | 5,494,484 | A | 2/1996 | Feingold | | 5,499,987 | A | 3/1996 | Feingold | | 5,571,113 | A | 11/1996 | McDonald | | 5,616,148 | A | 4/1997 | Eagles et al. | | 5,620,450 | A | 4/1997 | Eagles et al. | | 5,653,715 | A | 8/1997 | Reich et al. | | | | | | ## (10) Patent No.: US 9,463,089 B2 (45) **Date of Patent:** Oct. 11, 2016 #### FOREIGN PATENT DOCUMENTS | CN | 1536979 | 10/2004 | | | | |----|-------------|---------|--|--|--| | CN | 201022790 | 2/2008 | | | | | | (Continued) | | | | | #### OTHER PUBLICATIONS International Search Report and Written Opinion for PCT/US2013/41992, 6 pages, dated Aug. 13, 2013. Supplementary European Search Report and Annex to the European Search Report issued for EP Application No. 13794376 dated Feb. 26, 2015, 7 pgs. English translation of Chinese Office Action issued for CN 201380020196.4 dated Jul. 27, 2015, 9 pgs. (Continued) Primary Examiner — Katherine M Shi Assistant Examiner — Michael Mendoza (74) Attorney, Agent, or Firm — Haynes and Boone, LLP #### (57) ABSTRACT Various systems, apparatuses, and processes may be used for intraocular lens surgery. In particular implementations, a system for intraocular lens surgery may include a shell, a plunger, and a deformable sleeve. The shell may, for example, include an outer wall and an inner wall, wherein the inner wall defines a passage through the body. The plunger may be adapted to move within the passage and include first end adapted to be engaged by a user for advancing the plunger within the passage and a second end adapted to interface with an intraocular lens. The deformable sleeve may be sized to fit around the plunger and adapted to engage with the shell and the plunger to provide force feedback to advancing the plunger through the passage. #### 20 Claims, 4 Drawing Sheets | U.S. PATENT DOCUMENTS 2009/02/40257 Al. \$ 92009 Meyer | (56) | References Cited | | | 2009/0191087 A1 7/2009 Klein et al.
2009/0240257 A1* 9/2009 Meyer | | | | | 606/107 | | |---|-------------|------------------|--------|-----------------|--|------------|--------|------------|---------------|----------------|-----------| | 5.876,406 A 3/1999 Wolf et al. 2010/03/12254 Al 12/2010 Downer et al. | | U.S. | PATENT | DOCUMENTS | 20 | 10/0125278 | A1 | 5/2010 | Wagner | •••••• | 000/10/ | | \$3876,440 A 31999 Feingold 2011/014653 Al 62/2011 Pankin et al. 50/26/27 A 81999 Makker et al. 2012/2012/10/24 Al 8/2012 Tankah et al. 50/26/27 A 81999 Makker et al. 2013/02/2014 Al 8/2012 Markers et al. 2014/02/2013 Al 8/2012 Markers et al. 2014/02/2013 Al 8/2014 2014/0 | 5.876.40 | 6 A | 3/1999 | Wolf et al. | | | | 12/2010 | Downer et | | | | 5.944,725 A 81999 Makker of al. 2013/03069256 A1 32/013 Han 5.944,725 A 81999 Cleans et al. 2013/0302184 A1 82/013 Wanders et al. | 5,876,44 | 0 A | 3/1999 | Feingold | | | | | | | | | 5044,725 A 81999 Creenas et al. 2013/02/26194 Al* 8/2013 Wanders et al. 606/107 | | | | | | | | | | a1. | | | Souty-976 A 91999 | | | | | | | | | | t al | 606/107 | | 6.001,107 A 121999 Feingold 2014/02/20183 A1 72/014 Anderson 6.010,510 A 12000 Brown et al. 2014/02/20183 A1 82/014 Anglet et al. 6.093/731 A 22000 Chambers et al. 2014/02/2018 A1 82/014 Anglet et al. 6.093/731 B 2/0200 Chambers et al. 2014/02/2018 B 2/0200 Chick | | | | | | | | | | | | | Column | | | | | | | | 7/2014 | Anderson | | | | Copyright A 52000 Chambers Computer tail. | | | | | 20 | 14/0222013 | Al | 8/2014 | Argal et al | • | | | 6.083_230 | | | | | | EC | DEIGI | NI DATE | NT DOCL | IMENITO | | | 6.083.230 A 7,2000 Makker et al. 6.161.229 A 12,2000 Feingold et al. CN 1012151194 82011 6.241,737 B1 62001 Feingold et al. CN 10151194 82011 6.231,735 B1 9,2001 Glick et al. EP 120000 3/2003 6.312,433 B1 112001 Butts et al. EP 1360944 11/2003 6.343,852 B1 12002 Collisson et al. EP 1360944 11/2003 6.343,852 B1 12002 Collisson et al. EP 1806022 6/2007 6.355,946 B2 3/2002 Kikuchi et al. EP 1806022 6/2007 6.393,789 B1 6/2002 Capetan 6.393,789 B1 6/2002 Capetan 6.393,789 B1 6/2002 Capetan 6.404,7519 B1 9/2002 Brady et al. ER 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | | | | rc | KEIOI | NIAIE | NI DOCO | INTENTS | | | Gold | | | | | CN | | 101292 | 913 | 10/2008 | | | | 6.283,975 B1 9/2001 Glick et al. EP 1360944 11/2003 3/2003 6.314,862 B1 11/2001 Butts et al. EP 1800622 6/2007 6/2008 5/2002 Sutts et al. EP 1800622 6/2008 6/2008 6/2008 5/2002 Sutts et al. EP 2085053 8/2009 6/2008 6/ | | | | | CN | | 101677 | 857 | | | | | 6.312,433 B1 11/2001 Butts et al. EP 1300044 11/2003 6.335,046 B2 3/2002 Collinson et al. EP 1500622 6/2007 6.355,046 B2 3/2002 Kikuchi et al. EP 1500622 6/2007 6.335,046 B2 3/2002 Makker et al. EP 2088,053 8/2009 6.398,788 B1 6/2002 Capetan JP 2009-183366 8/2009 6/406,481 B2 6/2002 Feingold et al. RU 2138322 9/1999 6/406,481 B2 6/2002 Feingold et al. RU 2149356 12/2004 6/447,520 B1 9/2002 Capetan JP 2009-183366 8/2009 6/407,519 B1 9/2002 Capetan JP 2009-183366 8/2009 6/407,519 B1 9/2002 Capetan JP 2009-183366 8/2009 6/407,519 B1 9/2002 Capetan RU 2247956 12/2004 6/447,520 B1 9/2002 Capetan RU 2247956 12/2004 6/447,520 B1 9/2002 Capetan RU 2247722 3/2007 6/471,708 B2 10/2002 Capetan RU 2294722 3/2007 6/471,708 B2 10/2002 Capetan RU 239010 1/2010 6/471,708 B2 10/2002 Capetan RU 239010 1/2010 6/471,708 B2 10/2002 Capetan RU 239010 1/2010 6/471,708 B2 11/2003 Capetan RU 239010 1/2010 6/471,708 B2 11/2004 Capetan RU 239010 1/2010 6/471,708 B2 1/2004 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 1/2010 6/4710 6/4710 1/2010
6/4710 | | | | | | | | | | | | | 6.334,862 B1 1/2002 Collinson et al. EP 1800622 6/2007 6.387,101 B1 5/2002 Butts et al. EP 2088,053 8/2009 6.387,101 B1 5/2002 Makker et al. PP 2008-024462 8/2009 6.398,789 B1 6/2002 Capetan JP 2009-183366 8/2009 6.447,519 B1 9/2002 Capetan JP 2009-183366 8/2009 6.447,519 B1 9/2002 Brady et al. RU 243956 1/2009 6.447,519 B1 9/2002 Brady et al. RU 243956 1/2009 6.447,519 B1 9/2002 Capetan RU 243956 1/2009 6.447,519 B1 9/2002 Brady et al. RU 224956 1/2004 6.471,708 B2 10/2002 Clark et al. RU 2261727 10/2005 6.471,708 B2 10/2002 Clark et al. RU 2261727 10/2005 6.491,697 B1 12/2002 Clark et al. RU 2261727 10/2005 6.491,697 B1 12/2002 Clark et al. SU 140400 11/1988 6.503,275 B1 1/2003 Clamming SU 1706614 11/1992 6.505,195 B2 1/2003 Chambers et al. WO WO 90/3152 11/1996 6.505,195 B2 1/2003 Binder WO WO 90/3152 11/1996 6.505,195 B2 1/2003 Binder WO WO/9713476 4/1997 6.670,891 B2 4/2004 Ott WO WO/981089 11/1998 6.673,196 B2 4/2004 Ott WO WO/981344 4/1998 6.733,507 B2 5/2004 McNicholas et al. WO WO/981349 11/1998 6.733,507 B2 5/2004 McNicholas et al. WO WO/9826733 6/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 6/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 19/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. WO WO/9826738 9/1998 7.014,644 B2 3/2006 Kobayashi et al. W | | | | | | | | | | | | | 6.387,016 B1 5/2002 Butts et al. | | | | | | | | | | | | | 6.398,788 B1 6/2002 Makker et al. | | | | | | | | | | | | | 6.496.84 B2 6.2002 Eringpold et al. RU 218322 91999 | | | | | | | | | | | | | 6406.481 B2 6.2002 Endingold et al. RU 2138232 91999 | | | | | | | | | | | | | 6,447,519 BI 9,2002 Ott et al. RU 2242956 12,2004 | | | | | | 20 | | | | | | | 6,447,520 BJ 9/2002 Ott et al. 6,468,282 BJ 10/2002 Kikuchi et al. RU 2294722 3/2007 6,471,708 B2 10/2002 Green RU 2379010 1/2010 6,491,679 B1 12/2002 Clark et al. SU 1440496 11/1988 6,503,275 B1 1/2003 Cumming SU 1706614 1/1992 6,506,195 B2 1/2003 Chambers et al. WO WO 96,37152 11/1996 6,537,283 B2 3/2003 Van Noy WO WO 96,37152 11/1996 6,537,283 B2 3/2003 Binder WO WO 97,18476 4/1997 6,679,891 B2 1/2004 Makker et al. WO WO 9810,1899 1/1998 6,733,507 B2 5/2004 McNicholas et al. WO WO 9815,244 4/1998 6,733,507 B2 5/2004 McNicholas et al. WO WO 983,733 6/1998 6,733,507 B2 5/2004 McNicholas et al. WO WO 983,733 6/1998 6,733,507 B2 3/2006 Kobayashi et al. WO WO 983,733 6/1998 7,014,641 B2 3/2006 Kobayashi et al. WO WO 90,26333 8/2002 7,156,854 B2 1/2007 Brown et al. WO WO 90,266,338 8/2002 7,302,609 B2 1/2008 Beavers et al. WO WO 90,206,60338 8/2002 7,302,609 B2 1/2008 Beavers et al. WO WO 90,020,789,862 1/2007 7,487,007 B2 3/2010 Makker et al. WO WO 90,020,789,868 1/2007 7,487,007 B2 3/2010 Makker et al. WO WO 00,000,789,862 1/2007 7,947,049 B2 5/2011 Vaquero WO WO 00,000,000,000,000,000,000,000,000,000 | | | | | | | | | | | | | 6.471,708 B2 10/2002 Green RU 2379010 1/2010 6.491,697 B1 12/2002 Clark et al. SU 1706614 1/1992 6.503,275 B1 1/2003 Clambers et al. WO WO 9/6/37152 6.506,195 B2 1/2003 Clambers et al. WO WO 9/6/3715476 4/1997 6.673,7283 B2 3/2003 Binder WO WO 9/7/376844 4/1997 6.673,737 B1 8/2003 Binder WO WO 9/7/376844 4/1997 6.673,7381 B2 1/2004 Makker et al. WO WO 9/7/376844 4/1998 6.733,507 B2 5/2004 McNicholas et al. WO WO 9/8/3733 6/1998 6.733,507 B2 5/2004 McNicholas et al. WO WO 9/8/3733 6/1998 7.014,641 B2 3/2005 Vincent WO WO 9/8/3733 6/1998 7.014,641 B2 3/2006 Vincent WO WO 9/8/3733 6/1998 7.014,641 B2 3/2006 Vincent WO WO 9/6/3733 6/1998 7.037,339 B2 5/2006 Vincent WO WO 9/6/3733 6/1998 7.037,339 B2 5/2006 Vincent WO WO 9/6/3/46 12/1999 7.156,854 B2 1/2007 Brown et al. WO WO 9/6/3/46 12/1999 7.320,600 B2 1/2008 Beavers et al. WO WO 9/6/3/46 12/1999 7.348,038 B2 3/2008 Bayes et al. WO WO 9/7/08/862 9/2007 7.487,039 B2 5/2010 Makker et al. WO WO 2007/08/886 11/2007 7.687,097 B2 3/2010 Makker et al. WO WO 2007/08/886 11/2007 7.947,049 B2 5/2011 Tanaka WO WO 2007/08/886 11/2007 8.0214,23 B2 9/2011 2007/08/896 2007/08/896 8.0214,23 B2 9/2011 Tanaka WO WO 2007/08/896 2007/08/896 | | | | | RU | | | | 10/2005 | | | | 6.491,697 Bi 1/2002 Clark et al. SU 1440496 11/1988 6.503.275 Bi 1/2003 Cumming SU 1706614 11/1992 6.506.195 Bi 1/2003 Cumming SU 1706614 11/1992 6.607.537 Bi 1/2003 Van Noy WO WO WO 96/37152 11/1996 6.537.283 Bi 2/2003 Van Noy WO | | | | | | | | | | | | | 6,503,275 BI 1/2003 Clumming SU 1706614 1/1992 | | | | | | | | | | | | | 6.506.195 B2 1/2003 Chambers et al. WO WO 96/371525 11/1996 6.507.537 B1 8/2003 Van Novy WO WO WO9713476 4/1997 6.607.537 B1 8/2003 Binder WO WO9801089 1/1998 6.673.104 B2 4/2004 Ott WO WO981089 1/1998 6.733.105 B2 4/2004 Makker et al. WO WO981089 1/1998 6.733.507 B2 5/2004 Melvicholas et al. WO WO9826733 6/1998 6.733.507 B3 11/22005 Vincent WO WO9826733 6/1998 7.014.641 B2 3/2006 Kobayashi et al. WO WO9826733 6/1998 7.014.641 B2 3/2006 Kobayashi et al. WO WO9962436 12/1999 7.037.328 B2 5/2007 Vincent WO WO9962436 12/1999 7.156.854 B2 1/2007 Brown et al. WO WO 20.606338 8/2002 7.156.850 B2 1/2008 Beavers et al. WO WO 20.005316 10/2002 7.330.690 B2 1/2008 Beavers et al. WO WO 20.007080868 7/2007 7.348.038 B2 3/2008 Makker et al. WO WO 20.007098022 8/2007 7.487.091 B2 3/2010 Makker et al. WO WO 20.007098022 8/2007 7.947.049 B2 5/2011 Vaquero WO WO2007098028 11/2007 8.021.423 B2 9/2011 Tanaka WO WO20000079882 11/2008 8.080.017 B2 12/2011 Tanaka WO WO200000789802 11/2008 8.080.017 B2 12/2011 Tanaka WO WO2012004592 1/2012 8.152.817 B2 4/2012 Tanaka WO WO2012004592 1/2012 8.152.817 B2 4/2013 Tanaka WO WO2012004592 1/2012 8.425.955 B2 4/2013 Tanaka WO WO2013035939 12/2013 8.439.973 B2 5/2013 Bogaert WO WO2013035939 3/2013 8.439.973 B2 5/2013 Bogaert WO WO20130376067 5/2013 8.439.973 B2 5/2013 Tanaka WO WO201303794 3/2013 8.470.032 B2 6/2013 Inoue et al. WO WO2014049355 6/2014 8.892.049 B2 1/2204 Caltin et al WO WO2014048355 6/2014 8.892.049 B2 1/2204 Caltin et al WO WO2014074865 5/2014 8.892.049 B2 1/2204 Caltin et al WO WO2014074865 5/2014 8.892.049 B2 1/2204 Caltin et al WO WO2014074864 5/2014 8.900.0006788 A1 1/2005 Weber et al. International Search Report for PCT/US2000/067814, Publication No. WO200005788 A1 1/2007 Meyer US2009/067814, dated Apr. 1, 2010, 5 pages. PCT International Perliminary Report on Patentability, PCT/US2009005788 A1 1/2009 Robers et al. WOW02014074860 Apr. 2, 2010. Downer et al. Successor Report for Application No. 081021859, Publication No. WO20003034 A1 1/2009 Wolfer et al. Successor Report | | | | | | | | | | | | | 6.679,537 Bl 82003 Binder WO WO9301534 71,1997 6.673,104 B2 42004 Ott WO WO9815244 41,1998 6.733,507 B2 57004 Makker et al. WO WO9815244 41,1998 6.733,507 B2 57004 McNicholas et al. WO WO9815244 41,1998 7.014,641 B2 32006 Vincent WO WO9826733 61,1998 7.014,641 B2 32006 Vincent WO WO9826733 91,1998 7.014,641 B2 32006 Vincent WO WO983733 91,1998 7.014,641 B2 32006 Vincent WO WO983263 12,1999 7.037,328 B2 52006 Vincent WO WO 20,060338 87,0002 7.156,854 B2 12007 Brown et al. WO WO 2007,080868 72,0007 7.320,609 B2 12008 Beavers et al. WO WO 2007,080868 72,0007 7.348,038 B2 32008 Makker et al. WO WO2007,097221 87,0007 7.487,039 B2 32010 Makker et al. WO WO2007,097221 87,0007 7.947,049 B2 52011 Vaquero WO WO2007,097221 87,0007 7.947,049 B2 52011 Tanaka WO WO2007,09729 12,2008 8.080,017 B2 12011 Tanaka WO WO2007,098229 12,2008 8.080,017 B2 12011 Tanaka WO WO2009002739 12,2008 8.080,017 B2 122011 Tanaka WO WO20130321347 2,2013 8.273,122 B2 92012 Anderson WO WO20130321347 2,2013 8.425,595 B2 42013 Tasi et al. WO WO20130376067 5,2013 8.435,973 B2 52013 Bogaert WO WO2013184727 1,2013 8.439,973 B2 52013 Bogaert WO WO2013184727 1,2013 8.545,512 B2 102013 Ichinohe et al. WO WO2013184727 1,2013 8.545,512 B2 102013 Ichinohe et al. WO WO2014034355 6,2014 8.780,279 B2 42014 Shoji et al. WO WO2014043455 6,2014 8.780,279 B2 42014 Shoji et al. WO WO2014034355 6,2014 8.780,279 B2 42014 Shoji et al. WO WO2014034355 6,2014 8.780,279 B2 42014 Shoji et al. WO WO2014043455 6,2014 8.790,49 B2 12204 Calin et al. WO WO2014034355 6,2014 8.790,49 B2 12204 Calin et al. WO WO2014034355 6,2014 8.700,70050023 A1 10200 Ee et al. WO WO2014003353 3,7014 8.20060023540 A1 10200 Ee et al. WO WO2014003353 4,2010,5 pages. PCT International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010,60023540 A1 10200 Ee et al. Wowner et al. European Search Report for PCT/US2009,067814, Publication No. WO2009003788 A1 11200 Kobayashi et al. European Search Report for PCT/US2009,067814, | | | 1/2003 | Chambers et al. | | W | | | | | | | 6.679,891 B2 1/2004 Ott WO | | | | | WO | W | O9713 | 476 | | | | | 6.723.104 B2 | | | | | | | | | | | | | 6.976,98 B1 12/205 Vincent WO WO.9826733 6/1998 7.014,641 B2 3/206 Kobayashi et al. WO WO.9062436 12/1999 7.037,328 B2 5/2006 Vincent WO WO.9062436
12/1999 7.037,328 B2 5/2006 Vincent WO WO.2060338 8/2002 7.156,854 B2 1/2007 Brown et al. WO WO.2060338 8/2002 7.320,690 B2 1/2008 Bakker et al. WO WO.2007/080868 7/2007 7.348,038 B2 3/2018 Makker et al. WO WO.2007/098622 9/2007 7.687,097 B2 3/2011 Vaquero WO.2007/098622 9/2007 8.021,423 B2 9/2011 Tanaka WO.2007/098622 9/2007 8.021,423 B2 9/2011 Tanaka WO.2007/098622 9/2007 8.031,425,555 B2 4/2012 Tanaka WO.2007/098622 9/2013 8.273,122 B2 9/2012 Tanaka WO.2007/098622 9/2013 8.273,122 B2 9/2012 Tanaka WO.2007/098622 9/2013 8.273,122 B2 9/2012 Tanaka WO.2013021347 2/2013 8.273,122 B2 9/2013 Isai et al. WO.2013021347 2/2013 8.273,122 B2 9/2013 Isai et al. WO.2013021347 2/2013 8.273,122 B2 9/2013 Isai et al. WO.2013035939 3/2013 8.435,953 B2 4/2013 Isai et al. WO.20130347 2/2013 8.430,973 B2 5/2013 Bogaert WO.2013137208 9/2013 8.458,58,58 B2 4/2014 Anderson WO.2013137208 9/2013 8.548,585 B2 4/2014 Anderson WO.2013137208 9/2013 8.548,585 B2 4/2014 Anderson WO.2013184727 12/2013 8.548,488 B2 7/2014 Tasi et al. WO.2014039353 3/2014 8.784,485 B2 7/2014 Catin et al. WO.2014074860 5/2014 8.702,795 B2 4/2014 Catin et al. WO.2014074860 5/2014 8.702,795 B2 4/2014 Catin et al. WO.2014074860 5/2014 8.703,795 B2 4/2016 E et al. WO.2006020343 A1 10/2006 E et al. Uniternational Search Report for PCT/US2000/0767814, Publication No. WO.200602384 A1 11/2007 Kobayashi et al. WO.20060208034 A1 1/2009 Charles L. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Charles L. European Search Report for | | | | | | | | | | | | | South Color Colo | | | | | | | | | | | | | 7,037,328 B2 5/2006 Vincent WO WO 02/06/0338 8/2002 7,1320,690 B2 1/2008 Beavers et al. WO WO 2033216 10/2002 7,320,690 B2 1/2008 Beavers et al. WO WO 2007/080868 7/2007 7,587,097 B2 3/2010 Makker et al. WO WO 2007/097622 9/2007 7,947,049 B2 5/2011 Vaquero WO WO 2007/08622 9/2007 8,021,423 B2 9/2011 Tanaka WO WO 2009/09789 12/2008 8,080,017 B2 12/2011 Tanaka WO WO 2009/002789 12/2008 8,080,017 B2 12/2011 Tanaka WO WO 2009/002789 12/2008 8,152,817 B2 4/2012 Tanaka WO WO 201303593 3/2013 8,273,122 B2 9/2012 Anderson WO WO 2013035939 3/2013 8,273,122 B2 9/2013 Tsai et al. WO WO 2013035939 3/2013 8,435,595 B2 4/2013 Tsai et al. WO WO 20130376067 5/2013 8,439,373 B2 5/2013 Bogaert WO WO 2013137208 9/2013 8,439,515,12 B2 10/2013 Ichinohe et al. WO WO 201303137208 9/2013 8,435,515 B2 10/2013 Isai et al. WO WO 2013034727 12/2013 8,545,515 B2 10/2013 Isai et al. WO WO 2013035939 3/2014 8,885,088 B2 4/2014 Anderson WO WO 2013034727 12/2013 8,8438,512 B2 10/2013 Ichinohe et al. WO WO 2014093953 3/2014 8,885,088 B2 4/2014 Anderson WO WO 2014074860 5/2014 8,8920,494 B2 12/2014 Catlin et al. WO WO 2014074860 5/2014 8,8920,494 B2 12/2014 Catlin et al. WO WO 2014048355 6/2014 8,8920,494 B2 12/2014 Catlin et al. WO WO 2014074860 5/2014 8,8920,494 B3 17/2005 Rathert 2005/012439 A1 7/2005 Rathert 2005/012439 A1 7/2005 Rathert 2005/012439 A1 1/2006 Ee et al. WO WO 2014074870 5/2014 2006/0235439 A1 1/2006 Shepherd 2006/0235430 A1 10/2006 Ee et al. International Search Report for PCT/US2009/067814, Publication No. WO 2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Kobayashi et al. Sessier et al. No. WO 2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 1/2009 Rober et al. Sessier et al. No. WO 2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 1/2009 Rober et al. Sessier et al. No. WO 2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050024 A1 1/2009 Rober et al. Sessier et al. No. WO 2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050024 A1 1/2009 Smiley et al. Sessier et al. Sessier et al. Sessier et a | 6,976,98 | 9 B1 | | | | | | | | | | | 7,156,854 B2 1 1/2007 Brown et al. 7,320,690 B2 1/2008 Beavers et al. WO WO 2007/08862 7/2007 7,847,097 B2 3/2010 Makker et al. WO WO 2007/098622 9/2007 7,947,049 B2 5/2011 Vaquero WO WO 2007/098622 9/2007 7,947,049 B2 5/2011 Vaquero WO WO 2007/098622 9/2007 8,021,423 B2 9/2011 Tanaka WO WO 2007/098622 9/2007 8,021,423 B2 9/2011 Tanaka WO WO 2009002789 12/2008 8,880,017 B2 12/2011 Tanaka WO WO 20013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO 20013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO 20013037939 3/2013 8,435,955 B2 4/2013 Tsai et al. WO WO 20130376067 5/2013 8,439,973 B2 5/2013 Bogaert WO WO 2013037208 9/2013 8,430,973 B2 5/2013 Bogaert WO WO 2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO 2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO 2014065426 5/2014 8,802,049 B2 12/2014 Catlin et al. WO WO 2014065426 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO 2014065426 5/2014 8,8920,494 B2 12/2014 Catlin et al. WO WO 2014084355 6/2014 8,9920 49 B2 12/2014 Catlin et al. WO WO 2014084355 6/2014 2005/0154399 A1 7/2005 Weber et al. 2005/0154399 A1 7/2005 Weber et al. 2005/0154399 A1 7/2005 Weber et al. 2006/0226578 A1 10/2006 Peterson et al. 2006/0225678 A1 10/2006 Le et al. 2006/0235429 A1 10/2006 Le et al. 2006/0235430 A1 10/2006 Le et al. 2006/0335429 A1 10/2006 Le et al. 2006/0358430 A1 1/2009 Rober 2006/035844 | | | | | | | | | | | | | 7,320,690 B2 1/2008 Beavers et al. 7,348,038 B2 3/2008 Makker et al. WO WO 2007/080868 7/2007 7,947,049 B2 5/2011 Vaquero WO WO 20071/28886 11/2007 7,947,049 B2 5/2011 Vaquero WO WO 2007098622 9/2007 7,947,049 B2 5/2011 Vaquero WO WO 20071/28886 11/2007 8,021,423 B2 9/2011 Tanaka WO WO 2000002789 12/2008 8,080,017 B2 12/2011 Tanaka WO WO 20013001347 2/2013 8,152,817 B2 4/2012 Tanaka WO WO 20013031347 2/2013 8,273,122 B2 9/2012 Anderson WO WO 2013033593 3/2013 8,439,973 B2 5/2013 Bogaert WO WO 2013037509 5/2013 8,439,973 B2 5/2013 Bogaert WO WO 2013184727 12/2013 8,545,512 B2 10/2013 Inoue et al. WO WO 2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO 2014039353 3/2014 8,865,088 B2 4/2014 Anderson WO WO 2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO 2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO 20140648355 6/2014 8,702,795 B2 4/2014 Cathin et al. WO WO 20140643455 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014048545 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 20140484355 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 20140643455 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014074860 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014064355 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014064355 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014064355 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 20140644355 6/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014065426 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014065426 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014065426 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014065426 5/2014 8,920,494 B2 12/2014 Cathin et al. WO WO 2014065426 5/2014 8,920, | | | | | | | | | | | | | 7,348,038 B2 3/2008 Makker et al. WO WO2007097221 8/2007 7,687,097 B2 3/2010 Makker et al. WO WO2007128886 11/2007 8,021,423 B2 9/2011 Tanaka WO WO2009002789 12/2008 8,080,017 B2 12/2011 Tanaka WO WO2009002789 12/2008 8,180,017 B2 12/2011 Tanaka WO WO2009002789 12/2008 8,180,017 B2 12/2011 Tanaka WO WO2012004592 1/2012 8,152,817 B2 4/2012 Tanaka WO WO2013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO2013021347 2/2013 8,425,595 B2 4/2013 Tsai et al. WO WO2013076067 5/2013 8,4470,032 B2 6/2013 Inoue et al. WO WO201317208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO2014093533 3/2014 8,685,088 B2 4/2014 Anderson WO WO2014093533 3/2014 8,685,088 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014074860 5/2014 2005/0149057 A1 7/2005 Weber et al. WO WO2014074870 5/2014 2005/0149057 A1 7/2005 Weber et al. WO WO201407471 7/2014 2005/0149057 A1 7/2005 Weber et al. WO WO201407471 7/2014 2006/0235429 A1 10/2006 Lee et al. International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2006/0229634 A1 10/2006 Lee et al. PCT International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Bessiere et al. PCT International Preliminary Report on Patentability, PCT/US2009/00788 A1 1/2009 Downer 25, 2012, 5 pages. 2007/0050054904 A1 1/2009 Charles 100 No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/00364904 A1 1/2009 Charles 100 No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/00364904 A1 1/2009 Charles 100 No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/00364904 A1 1/2009 Charles 100 No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/00364904 A1 1/2009 Charles 100 No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 20 | | | | | | | | | | | | | No. | | | | | | | | | | | | | 8,021,423 B2 9/2011 Tanaka 8,080,017 B2 12/2011 Tanaka WO WO201004592 1/2012 8,152,817 B2 4/2012 Tanaka WO WO2013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO2013035939 3/2013 8,432,595 B2 4/2013 Tsai et al. WO WO2013137208 9/2013 8,439,973 B2 5/2013 Bogaert WO WO201317208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO201484727 12/2013 8,685,088 B2 4/2014 Anderson WO WO201405426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014047850 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014048355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014047480
5/2014 8,920,494 B2 12/2015 Catlin et al. WO WO201404717 7/2014 2005/0149057 A1 7/2005 Rathert 2005/0149057 A1 7/2005 Weber et al. 2005/0149057 A1 7/2005 Weber et al. 2005/0154399 A1 7/2005 Weber et al. 2006/022578 A1 10/2006 Dusek 2006/023634 A1 10/2006 Lee et al. 2006/0235430 A1 10/2006 Bessiere et al. 2006/0235430 A1 10/2006 Bessiere et al. 2006/0235430 A1 10/2006 Bessiere et al. 2007/0050023 A1 10/2006 Lee et al. 2007/0050023 A1 10/2006 Bessiere et al. 2007/0050023 A1 10/2006 Lee 2008/0030425 A1 10/2006 Colored A1 2/2008 Downer et al. 2008/0030425 A1 10/2008 Colored A1 2/2008 Downer et al. 2009/0035484 A1 1/2009 Charles 2009/0035484 A1 1/2009 Charles 2009/003404 A1 1/2009 Smiley et al. | 7,687,09 | 7 B2 | | | | | | | | | | | 8,080,017 B2 12/2011 Tanaka WO WO2013021347 2/2013 8,152,817 B2 4/2012 Tanaka WO WO2013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO2013035939 3/2013 8,475,595 B2 4/2013 Tsai et al. WO WO2013076067 5/2013 8,439,973 B2 5/2013 Bogaert WO WO201317208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO2014039353 3/2014 8,685,088 B2 4/2014 Anderson WO WO2014039353 3/2014 8,782,795 B2 4/2014 Shoji et al. WO WO2014065426 5/2014 8,702,795 B2 4/2014 Tsai et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014084355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014084355 6/2014 8,920,494 B2 12/2015 Catlin et al. WO WO2014084355 6/2014 2002/0151904 A1 10/2002 Feingold et al. 2005/014399 A1 7/2005 Weber et al. 2005/014399 A1 7/2005 Weber et al. 2005/0222578 A1 10/2005 Vaquero 2006/02206167 A1 7/2006 Dusek 2006/0223634 A1 10/2006 Shepherd 2006/0235430 A1 10/2006 Lee et al. 2006/0235430 A1 10/2006 Bessiere et al. 2007/0050023 A1 3/2007 Bessiere et al. 2007/0050023 A1 3/2007 Bessiere et al. 2007/0050023 A1 3/2007 Bessiere et al. 2007/0150056 A1 6/2007 Meyer 2007/0270945 A1 11/2007 Kobayashi et al. 2008/0312661 A1 12/2008 Downer 2008/0312661 A1 12/2008 Downer 2008/00312661 A1 12/2008 Downer 2008/0030425 A1 1/2009 Charles 2009/003425 A1 1/2009 Smiley et al. 2009/0034904 A1 1/2009 Smiley et al. 2009/0034045 A1 1/2009 Smiley et al. 2009/0034040 A1 2/2008 Hollmen | | | | | | | | | | | | | 8,152,817 B2 4/2012 Tanaka WO WO2013021347 2/2013 8,273,122 B2 9/2012 Anderson WO WO2013035939 3/2013 3/2013 8,425,595 B2 4/2013 Tsai et al. WO WO2013076067 5/2013 8,439,973 B2 5/2013 Bogaert WO WO2013137208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013137208 9/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO2014039353 3/2014 8,685,088 B2 4/2014 Anderson WO WO2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO201404084355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO201404271 7/2014 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Weber et al. WO WO2014104271 7/2014 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Weber et al. WO WO2014074860 5/2014 4 10/2005 Vaquero International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2016/0229634 A1 10/2006 Dusek dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 10/2006 Lee et al. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 10/2006 Lee et al. International Search Report for PCT/US209/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Bessiere et al. 2007/005003 A1 3/2007 Bessiere et al. 2008/0312661 A1 1/2008 Downer et al. 2009/005788 A1 1/2008 Rathert European Search Report and Opinion, EP EP12160448.2, dated Jun. 2009/005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0034904 A1 1/2009 Holmen | | | | | | | | | | | | | 8,273,122 B2 9/2013 Anderson WO WO2013035939 3/2013 8,439,973 B2 5/2013 Bogaert WO WO2013137208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO2014039353 3/2014 8,685,088 B2 4/2014 Anderson WO WO2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,792,494 B2 12/2014 Catlin et al. WO WO2014048355 6/2014 2002/0151904 A1 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Rathert 2005/0149057 A1 7/2005 Weber et al. 2005/0122578 A1 10/2005 Vaquero International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. 2006/0229634 A1 10/2006 Shepherd 2010. 2006/0235429 A1 10/2006 Shepherd 2006/0235430 A1 10/2006 Shepherd 2007/0050023 A1 3/2007 Bessiere et al. International Search Report for PCT/US2009/067814, Publication 2006/0235430 A1 10/2006 Bessiere et al. PCT International Preliminary Report on Patentability, PCT/02007/0270945 A1 11/2007 Kobayashi et al. PCT International Preliminary Report on Patentability, PCT/02007/0270945 A1 11/2007 Kobayashi et al. PCT International Preliminary Report on Patentability, PCT/02008/0312661 A1 1/2008 Bowner et al. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0054904 A1 2/2009 Holmen WO WO201406395399 3/2013 WO WO20140639353 3/2014 WO WO201407860 5/2014 5 | | | | | | | | | | | | | 8,439,973 B2 5/2013 Bogaert WO WO2013137208 9/2013 8,470,032 B2 6/2013 Inoue et al. WO WO2013184727 12/2013 8,545,512 B2 10/2013 Ichinohe et al. WO WO20140839353 3/2014 8,685,088 B2 4/2014 Anderson WO WO2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014084355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014084355 6/2014 2002/0151904 A1 10/2002 Feingold et al. 2005/014399 A1 7/2005 Weber et al. WO WO2014104271 7/2014 2005/0154399 A1 7/2005 Weber et al. OTHER PUBLICATIONS 2005/0154399 A1 10/2005 Usek dated Mar. 9, 2010. 2006/023043 A1 10/2006 Dusek dated Mar. 9, 2010. 2006/0230543 A1 10/2006 Shepherd 2010. 2006/0235429 A1 10/2006 Lee et al. International Search Report for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 2006/0235430 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0150056 A1 6/2007 Meyer US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/020921 A1 8/2008 Downer 2008/0312661 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0034925 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen | | | | | WO | WO2 | 013035 | 939 | 3/2013 | | | | 8,470,032 B2 6/2013 Inoue et al. 8,545,512 B2 10/2013 Ichinohe et al. 8,685,088 B2 4/2014 Anderson WO WO2014065426 5/2014 8,702,795 B2 4/2014 Shoji et al. WO WO2014074860 5/2014 8,784,485 B2 7/2014 Tsai et al. WO WO2014084355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014084355 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO20140471 7/2014 2002/0151904 A1 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Rathert 2005/0149057 A1 7/2005 Weber et al. 2005/0167466 A1 7/2006 Dusek dated Mar. 9, 2010. 2006/020167 A1 9/2006 Peterson et al. 2006/020167 A1 9/2006 Shepherd 2010. 2006/0235429 A1 10/2005 Le et al. 2006/0235429 A1 10/2006 Le et al. 2007/050023 A1 3/2007 Bessiere et al. 2007/050023 A1 3/2007 Bessiere et al. 2007/050023 A1 1/2007 Kobayashi et al. 2007/0270945 A1 11/2007 Kobayashi et al. 2008/0312661 A1 12/2008 Downer et al. 2008/0312661 A1 12/2008 Downer et al. 2009/001858 A1 1/2009 Charles European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 2009/003425 A1 1/2009 Smiley et al. 2009/003445 | | | | | | | | | | | | | 8,545,512 B2 10/2013 Ichinohe et al. 8,685,088 B2 4/2014 Anderson WO WO2014065426 5/2014 8,782,795 B2 4/2014 Shoji et al. 8,782,485 B2 7/2014 Tsai et al. WO WO2014074860 5/2014 8,920,494 B2 12/2014 Catlin et al. WO WO2014043455 6/2014 8,920,494 B2 12/2014 Catlin et al. WO WO20140471 7/2014 2002/0151904 A1 10/2005 Feingold et al. 2005/0149057 A1 7/2005 Rathert 2005/0154399 A1 7/2005 Weber et al. 2005/0222578 A1 10/2005 Vaquero International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. 2006/0200167 A1 9/2006 Peterson et al. 2006/02304 A1 10/2006 Shepherd 2010. 2006/0235430 A1 10/2006 Le et al. 2006/0235430 A1 10/2006 Le et al. 2007/050023 A1 3/2007 Bessiere et al. 2007/050023 A1 3/2007 Meyer US2009/067814, publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0270945 A1 11/2007 Meyer US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/020921 A1 8/2008 Downer US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/0312661 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 2009/0034045 A1 1/2009 Smiley et al. 2009/003494 A1 2/2009 Holmen | | | | | | | | | | | | | 8,685,088 B2 | | | | | | | | | | | | | 8,784,485 B2 7/2014 Tsai et al. 8,920,494 B2 12/2014 Catlin et al. 902/0151904 A1 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Rathert 2005/0154399 A1 7/2005 Weber et al. 2005/0167466 A1 7/2006 Dusek 2006/0200167 A1 9/2006 Peterson et al. 2006/0229634 A1 10/2006 Shepherd 2006/0235429 A1 10/2006 Le et al. 2006/0235430 A1 10/2006 Le et al. 2007/0050056 A1 6/2007 Meyer 2007/0270945 A1 11/2007 Kobayashi et al. 2008/020091 A1 8/2008 Downer 2008/0312661 A1 12/2008 Downer 2008/0312661 A1 12/2008 Rathert 2009/0036848 A1 1/2009 Rathert 2009/0030425 A1 1/2009 Smiley et al. 2009/00364904 A1 2/2009 Holmen WO WO2014084355 6/2014 OTHER PUBLICATIONS International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. International Search Report for PCT/US2009/067814, publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages.
PCT International Preliminary Report on Patentability, PCT/US2009/067814, dated Jun. 21, 2011, 6 pages. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. 2009/003425 A1 1/2009 Smiley et al. 3 pages. | 8,685,08 | 8 B2 | | | | | | | | | | | 8,920,494 B2 12/2014 Catlin et al. WO WO2014104271 7/2014 2002/0151904 A1 10/2002 Feingold et al. 7/2005 Rathert 2005/0154399 A1 7/2005 Weber et al. OTHER PUBLICATIONS 2005/0222578 A1 10/2005 Vaquero International Search Report for PCT/US2010/037374, 3 pages, 2006/0167466 A1 7/2006 Dusek dated Mar. 9, 2010. 2006/0200167 A1 9/2006 Peterson et al. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 2006/0235429 A1 10/2006 Shepherd 2010. 2006/0235430 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Bessiere et al. No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0270945 A1 11/2007 Kobayashi et al. Downer US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/0312661 A1 12/2008 Downer Et al. Suropean Search Report and Opinion, EP EP12160448.2, dated Jun. 25, 2012, 5 pages. 2009/00054904 A1 2/2009 Holmen Spages. 2009/0030425 A1 1/2009 Smiley et al. 3 pages. | | | | | | | | | | | | | 2002/0151904 A1 10/2002 Feingold et al. 2005/0149057 A1 7/2005 Rathert 7/2005 Weber et al. 7/2005 Weber et al. 10/2005 Vaquero 1006/0167466 A1 7/2006 Dusek 4dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 3 pages, dated Mar. 9, 2006/0229634 A1 10/2006 Shepherd 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. International Search Report for PCT/US2009/067814, Publication 2006/0235430 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. PCT International Preliminary Report on Patentability, PCT/US2009/0270945 A1 11/2007 Kobayashi et al. 2008/0200921 A1 8/2008 Downer 2008/0312661 A1 12/2008 Downer 2009/0005488 A1 1/2009 Rathert 2009/0018548 A1 1/2009 Rathert 2009/0030425 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen 3 pages. | | | | | | | | | | | | | 2005/0149057 A1 7/2005 Rathert 7/2005 Weber et al. OTHER PUBLICATIONS 2005/0222578 A1 10/2005 Vaquero International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. 2006/0200167 A1 9/2006 Dusek dated Mar. 9, 2010. 2006/0229634 A1 10/2006 Shepherd 2010. 2006/0235429 A1 10/2006 Lee et al. International Search Report for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 2006/0235430 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Bessiere et al. PCT International Preliminary Report on Patentability, PCT/ 2007/0270945 A1 11/2007 Kobayashi et al. 2008/0312661 A1 12/2008 Downer 2008/0312661 A1 12/2008 Downer 2009/0005488 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 3 pages. | | | | | WO | WOZ | 014104 | 2/1 | 7/2014 | | | | 2005/0222578 A1 10/2005 Vaquero 2006/0200167 A1 7/2006 Dusek 2006/0229634 A1 10/2006 Shepherd 2006/0235429 A1 10/2006 Lee et al. 2006/0235430 A1 10/2006 Lee et al. 2007/0050023 A1 3/2007 Bessiere et al. 2007/0150056 A1 2007/0270945 A1 11/2007 Kobayashi et al. 2008/0200921 A1 8/2008 Downer 2008/02005788 A1 1/2009 Rathert 1/2009/0018548 A1 1/2009 Rathert 1/2009/0030425 A1 1/2009 Smiley et al. 2009/0030425 A1 1/2009 Smiley et al. 2009/0030425 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen International Search Report for PCT/US2010/037374, 3 pages, dated Mar. 9, 2010. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. PCT International Preliminary Report on Patentability, PCT/US2009/067814, dated Jun. 21, 2011, 6 pages. European Search Report and Opinion, EP EP12160448.2, dated Jun. 25, 2012, 5 pages. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. | | | | | | | OTI | IDD DIE | DI ICATIO | NIC. | | | 2006/0200167 A1 9/2006 Dusek dated Mar. 9, 2010. 2006/0200167 A1 9/2006 Peterson et al. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 2006/0235429 A1 10/2006 Lee et al. Userial International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0050023 A1 3/2007 Bessiere et al. No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0150056 A1 6/2007 Meyer US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/0200921 A1 8/2008 Downer Et al. European Search Report and Opinion, EP EP12160448.2, dated Jun. 25, 2012, 5 pages. 2009/00054904 A1 1/2009 Smiley et al. Userial Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. | | | | | Into | mational C | | | | | | | 2006/0200167 A1 9/2006 Peterson et al. Written Opinion for PCT/US2010/037374, 7 pages, dated Mar. 9, 2010. 2006/0235429 A1 10/2006 Lee et al. 2010. 2006/0235430 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0150056 A1 6/2007 Meyer Bessiere et al. PCT International Preliminary Report on Patentability, PCT/US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/0200921 A1 8/2008 Downer 2008/0312661 A1 12/2008 Downer et al. European Search Report and Opinion, EP EP12160448.2, dated Jun. 25, 2012, 5 pages. 2009/0005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. 2009/0030425 A1 1/2009 Smiley et al. 3 pages. | | | | | | | | сероп 10 | 1 1 (1/032) | 010/03/3/4, 3 | pages, | | 2006/0229634 A1 10/2006 Shepherd 2010. 2006/0235429 A1 10/2006 Lee et al. International Search Report for PCT/US2009/067814, Publication 2006/0235430 A1 10/2006 Le et al. No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/0150056 A1 6/2007 Meyer PCT International Preliminary Report on Patentability, PCT/ 2007/0270945 A1 11/2007 Kobayashi et al. US2009/067814, dated Jun. 21, 2011, 6 pages. 2008/0200921 A1 8/2008 Downer European Search Report and Opinion, EP EP12160448.2, dated Jun. 2009/0005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 3 pages. 2009/0054904 A1 2/2009 Holmen 3 pages. | | | | | | | | CT/US20 | 10/037374. | 7 pages, dated | Mar. 9. | | 2006/0235430 A1 10/2006 Le et al. No. WO2010/080351, dated Apr. 1, 2010, 5 pages. 2007/050023 A1 3/2007 Bessiere et al. PCT International Preliminary Report on Patentability, PCT/US2009/067814, dated Jun. 21, 2011, 6 pages. 2007/0270945 A1 11/2007 Kobayashi et al. European Search Report and Opinion, EP EP12160448.2, dated Jun. 2008/0200921 A1 8/2008 Downer 25, 2012, 5 pages. 2009/005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. 2009/0030425 A1 1/2009 Smiley et al. 3 pages. | | | | | | | | | , | . 1-9, | , | | 2007/050023 A1 2/2007 Bessiere et al. 2007/0150056 A1 6/2007 Meyer 2007/0270945 A1 11/2007 Kobayashi et al. 2008/0200921 A1 8/2008 Downer 2008/0312661 A1 12/2008 Downer et al. 2009/0005788 A1 1/2009 Rathert 2009/0018548 A1 1/2009 Charles 2009/0030425 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen PCT International Preliminary Report on Patentability, PCT/ US2009/67814, dated Jun. 21, 2011, 6 pages. European Search Report and Opinion, EP EP12160448.2, dated Jun. 25, 2012, 5 pages. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. | | | | | | | | | | | olication | | 2007/0150056 A1 2007/0270945 A1 1/2007 Kobayashi et al. 2008/020921 A1 8/2008 Downer 2008/0312661 A1 1/2008 Downer et al. 2009/0005788 A1 1/2009 Rathert 2009/0018548 A1 1/2009 Charles 2009/0030425 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen US2009/054904 A1 1/2009 Kobayashi et al. 2009/0018548 A1 1/2009 Smiley et al. 25, 2012, 5 pages. European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 3 pages. | | | | | | | | | | | | | 2007/0270945 A1 11/2007 Kobayashi et al. Downer 2008/0200921 A1 8/2008 Downer 2008/0312661 A1 12/2008 Downer et al. 2009/0005788 A1 1/2009 Rathert 2009/0018548 A1 1/2009 Charles 2009/030425 A1 1/2009 Smiley et al. 2009/0054904 A1 2/2009 Holmen 2/ | | | | | | | | | | | , PCT/ | | 2008/0200921 A1 8/2008 Downer European Search Report and Opinion, EF EF12100448.2, dated Jun. 2008/0312661 A1 12/2008 Downer et al. 25, 2012, 5 pages. 2009/0005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publication No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 3 pages. 2009/0054904 A1 2/2009 Holmen | | | | | | | | | | | | | 2009/0005788 A1 1/2009 Rathert European Search Report for Application No. 08102185.9, Publica-
2009/0030425 A1 1/2009 Charles tion No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008,
2009/0054904 A1 2/2009 Holmen 3 pages. | 2008/020092 | 1 A1 | 8/2008 | Downer | | - | - | ı and Opi | mon, EP EP | 12100448.2, da | uea Jun. | | 2009/0018548 A1 1/2009 Charles tion No. EP2002803, Published Dec. 17, 2008, dated Apr. 25, 2008, 2009/0030425 A1 1/2009 Smiley et al. 3 pages. | | | | | | | | rt for Apr | olication No. | 08102185.9 |
Publica- | | 2009/0030425 A1 1/2009 Smiley et al. 3 pages.
2009/0054904 A1 2/2009 Holmen 3 pages. | | | | | | | | | | | | | 2009/0054904 A1 2/2009 Holmen | | | | | | | , | | , 200 | , | , , | | 2009/0171366 A1 7/2009 Tanaka * cited by examiner | | | | | • | - | | | | | | | | 2009/017136 | 6 A1 | 7/2009 | Tanaka | * c | ted by exa | miner | | | | | ^{*} cited by examiner Oct. 11, 2016 # PLUNGER SYSTEM FOR INTRAOCULAR LENS SURGERY #### BACKGROUND The present disclosure relates to optical surgery, and more specifically to surgical replacement of a patient's lens. The human eye, in simple terms, functions to provide vision by transmitting and refracting light through a clear outer portion called the cornea and focusing the image by way of the lens onto the retina at the back of the eye. The quality of the focused image depends on many factors including the size, shape, and length of the eye, and the shape and transparency of the cornea and lens. When trauma, age, or disease causes the lens to become less transparent, vision deteriorates because of a reduction in light transmitted to the retina. This deficiency in the eye's lens is medically known as a cataract. The treatment for this condition is often surgical removal of the lens and implantation of an artificial lens, typically termed an intraocular lens (IOL). An IOL is often foldable and inserted into the eye through a relatively small incision by being advanced through an IOL insertion cartridge, which causes the IOL to fold. The 25 IOL is typically advanced through the insertion cartridge by a plunger-like device. Unfortunately, as the lens is inserted, the forces that the physician is required to exert on the plunger to move the lens can change drastically (e.g., sudden large decreases) and cause the IOL to suddenly shoot into the 30 eye, which can cause improper IOL placement and damage to eye tissue. In order to deter uncontrolled plunger advancement rate, some IOL injector systems utilize a metal spring that becomes compressed as the plunger advances. Thus, as the ³⁵ IOL get closer to the injection point into the eye, there is a resistive force from the spring, which can provide a reaction force that opposes force changes from the IOL. Other IOL injector systems may use interference fits between components to influence the rate of plunger advancement. #### **SUMMARY** In one general implementation, a system for intraocular lens (IOL) surgery may include a shell, a plunger, and a 45 deformable sleeve. The shell may include an outer wall and an inner wall, wherein the inner wall defines a passage through the body. The plunger may be adapted to move within the passage and include a first end adapted to be engaged by a user for advancing the plunger within the 50 passage and a second end including an intraocular lens interface. The deformable sleeve may be sized to fit around the plunger and be adapted to engage with the shell and the plunger to provide force feedback to advancing the plunger through the passage. The deformable sleeve may, for 55 example, be composed of silicone. In certain implementations, the deformable sleeve is engaged with the plunger and moves therewith while not engaged with the shell. The deformable sleeve may, for example, be adapted to engage with the outer wall of the 60 shell as the plunger is moved through the passage. As another example, the deformable sleeve may be adapted to engage with the inner wall of the shell as the plunger is moved through the passage. In some implementations, at least a portion of the deformable sleeve is engaged with the shell, and the deformable sleeve engages with the plunger as the plunger is advanced 2 through the passage. The deformable sleeve may, for example, be engaged with the inner wall of the shell. In particular implementations, the deformable sleeve is adapted to substantially maintain its shape if advancement force on the plunger is lowered. The shape maintained by the deformable sleeve being the shape at the instant the advancement force is decreased. Some implementations may include an insertion cartridge that includes a portion adapted to fold an intraocular lens as it passes therethrough. The deformable sleeve may be adapted to begin providing force feedback when the intraocular lens is in the folding portion. Another aspect of the disclosure includes a method including engaging a plunger with an intraocular lens; moving an end of the plunger towards a shell to advance the intraocular lens relative to an intraocular lens insertion cartridge; engaging a deformable sleeve disposed around the plunger with the shell and the plunger, the engaged deformable sleeve providing force feedback to advancement of the plunger relative to the shell; and advancing the IOL relative to the IOL insertion cartridge with the deformable sleeve providing force feedback. The method may also include positioning the intraocular lens in the insertion cartridge. The method may also include injecting the intraocular lens into an eye. Additionally, the method may include decreasing the force applied to move the plunger towards the shell, such that the deformable sleeve substantially maintains its shape so as not to cause the plunger to rebound away from the shell. Various implementations may include one or more features. For example, a plunger-type insertion system may provide force feedback as an IOL is prepared for insertion into an eye, which may assist in negating sudden changes in resistance of the IOL and uncontrolled plunger advancement. Moreover, the feedback may occur automatically, with no end user actions, which can ease burden on the user. Additionally, in some implementations, a user can reduce the force being applied to the plunger (e.g., to manipulate another instrument) without the plunger rebounding out of the shall The details and features of various implementations will be conveyed by the following description, along with the drawings. # BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS FIG. 1A shows an example plunger system for intraocular lens surgery in a retracted position. FIG. 1B is a partial cross-sectional view of the example plunger system of FIG. 1A in a retracted position FIGS. 2A-B show an example intraocular lens insertion FIG. 3 is a partial cross-sectional view of the example plunger system of FIG. 1A in which a sleeve has undergone deformation. FIG. 4 is a flowchart illustrating an example process for intraocular lens surgery. #### DETAILED DESCRIPTION FIGS. 1A-B illustrate an example plunger system 100 for intraocular lens (IOL) surgery. Plunger system 100 includes a shell 110 and a plunger 120, which is adapted to move within shell 110. Shell 110 includes a body 112 that has an outer wall 113a and an inner wall 113b, the inner wall defining a passage 114 through the body. As illustrated, body 112 is generally cylindrical in shape, and so is passage 114. In other implementations, body 112 and passage 114 may have cross-sectional shapes other than circular (e.g., oval or any other suitable shape). Shell 110 may also include an annular ring 5 116 that extends from body 112. Annular ring 116 may include a pair of wings 117a, 117b sized to allow a user (e.g., physician or other medical professional) to manually grasp the wings 117a, 117b (e.g., with a pair of fingers) and, hence, the system 100. Shell 110 may be made of plastic, metal, or 10 any other appropriate material. 3 Plunger 120 includes a body 121 and has a first end 122a and a second end 122b. As illustrated, first end 122a is sized to fit inside passage 114 while still allowing plunger 120 to move relative thereto. Second end 122b is opposite first end 1: 122a and includes an IOL interface 124. Body 121 may be made of plastic, metal, or any other appropriate material. IOL interface 124 is operable to interface with an IOL and advance the IOL through an IOL insertion cartridge. IOL interface 124 may, for example, include a body having a first 20 end and a second end. The first end may include a port into which an end of body 121 may be inserted. In the illustrated implementation, IOL interface 124 is rectangular in cross section. However, IOL interface 124 may have other cross-sectional shapes in other implementations. For example IOL 25 interface 124 may have cross-sectional shapes such as oval, ellipsoidal, or any other desired shape. Further, in some implementations, IOL interface 124 may be approximately 2-3 mm in width. IOL interface 124 may be made of an elastomer, such as a commercial injection-molded elastomer; a polymer, such as polypropylene or styrene; metal; or any other appropriate material. First end **122***a* may generally taper to the shape of IOL interface **124**, or there may be a distinct transition from the shape of first end **122***a* to the shape of IOL interface **124**. In 35 particular implementations, IOL interface **124** may not be integral with plunger **120**. For example, IOL interface **124** may be an attachable tip. Plunger 120 may include an annular ring 126 that extends from body 121 at end 122a. Annular ring 126 may assist a 40 user (e.g., physician or other medical personnel) in manipulating plunger 120 to advance it through shell 110. For example, the annular ring may provide a base at which a digit (e.g., a thumb) may apply force to plunger 120 to advance it through shell 110. Plunger 120 also includes a sleeve 127 disposed around at least a portion of body 121. The sleeve 127 may be formed from a deformable material 127 that is adapted to decrease the rate at which plunger 120 can advance as end 122b moves through a more resistive portions of a delivery system. For example, a more resistive portion of a delivery system may include a passage having a reduced cross-section. Further, in some implementations, as the plunger 120 is advanced, the sleeve 127 may deform to create resistance to the advancement. The sleeve 127 may prevent 55 uncontrolled advancement of the
plunger. Further, although the illustrated example system 100 includes a sleeve 127 formed from the deformable material, the disclosure is not so limited. Rather, the deformable material may be formed into any suitable shape or form that 60 is operable to provide the resistance to advancement of the plunger 120 through the shell 110, as described below. Therefore, while sleeve 127 is described, other configurations of the deformable material may be used and are within the scope of the disclosure. The sleeve 127 may include a first end 128a and a second end 128b. The sleeve 127 may be coupled to the body 121, 4 such that the body 121 and the sleeve 127 are moveable together. In operation, as the plunger 120 is moved relative to the shell 110, such that the plunger 120 is moved in the direction of arrow 129, the sleeve 127 engages the shell 110. For instance, the second end 128b of the sleeve 127 may engage an exterior of the shell 110, such as an end surface of the annular ring 116. In other implementations, a portion of the sleeve 127 may be received within the shell 110 between the plunger 120 and the shell 110. Upon engaging the shell 110, the sleeve 127 may be deformed as the plunger 120 continues to be advanced in the direction of arrow 129 relative to the shell 110. Deformation of the sleeve 127 continues as the end 122a approaches the shell 110. Deformation of the sleeve 127 may occur in any suitable manner. For example, the sleeve 127 may deform by wrinkling, bulging, compressing, and/or any other way. In certain implementations, sleeve 127 may include features to assist in its deformation. For example, in some instances, the sleeve 127 may include cavities, protuberances, grooves, fold lines, etc., to promote deformation thereof. The deformable material of sleeve 127 may be any suitable material or combination of materials. For example, the deformable material may be dense foam, gel, or silicone. Dense foam may, for example, compress (e.g., due to air being squeezed out of its air pockets) as it is squeezed between plunger 120 and shell 110. Gel or silicone would be reconformed as they are squeezed. The sleeve 127 may generally be adapted to any push-type injection design. Further, in some implementations, the sleeve 127 may have an ergonomic shape. The sleeve 127 may, for example, be made separately from plunger 120 and then slipped over its body 121. In certain implementations, the sleeve 127 may be overmolded onto the plunger 120. In some instances, one or more portions of the sleeve 127 may be adapted to deform. In other instances, the sleeve 127 may be adapted to deform over its entire length. Further, in some instances, the sleeve 127 may be adapted to deform over a defined range. For example, in some instances, the sleeve 127 may deform over a range of 7-9 mm. In other instances, sleeve 127 may deform over a range up to 15 mm or more. However, these ranges are provided only as examples, and the sleeve 127 may be adapted to deform over any desired range. The point at which the sleeve 127 may begin to provide force feedback may be defined. For example, advancement of an IOL through a tip of an IOL insertion cartridge, such as the IOL insertion cartridge shown in FIGS. 2A-2B, is typically when the most force is be applied by the user because of the amount of work needed to conform the IOL to the tip. However, this is often where force changes occur rapidly, because, once the IOL has conformed to the tip of an IOL insertion cartridge, the force feedback from the IOL may drop drastically. Thus, by properly sizing the length of the sleeve 127, deformation of the sleeve 127 may begin to provide force feedback at or near the point where the IOL enters the tip of an IOL insertion cartridge. In other implementations, the length may be adjusted to begin providing force feedback at various other points along the travel of the plunger 120. In certain modes of operation, end 122a of plunger 120 is retracted from shell 110 at the beginning of use, as shown in FIG. 1A. Then, system 100 is engaged with an IOL insertion cartridge, and plunger 120 is advanced to move IOL interface 124 into the insertion cartridge. IOL interface 124 can then engage an IOL located within the IOL insertion cartridge. FIGS. 2A-B illustrate an example IOL insertion cartridge 200. IOL insertion cartridge 200 facilitates the insertion of an IOL into a patient's eye. IOL insertion cartridge 200 includes a body 212 that has ends 213a, 213b and a passage 214 through the body. A foldable IOL may be advanced through the passage 214, such as during surgery. The foldable IOL, which may be made of silicone, soft acrylics, hydrogels, or other appropriate materials, may be advanced by the IOL interface 124 through passage 214 in preparation for insertion into the eye. IOL insertion cartridge 200 also includes sides 216a, 216b, which assist in grasping the IOL insertion cartridge 200. Sides 216a, 216b may taper outward to form wings 217a, 217b, which also assist in grasping the IOL insertion cartridge 200. Passage 214 may have an asymmetric bore at end 213*a*, which assists in folding an IOL. A common IOL may be approximately 6 mm in diameter, and with haptics can be up to around 13 mm in overall length. However, surgical incisions are typically much smaller (e.g., 2-3 mm in width). 20 An IOL is, therefore, typically folded before insertion through the incision. Passage 214 may also taper along its length to an elliptical bore at end 213*b* to assist in folding an IOL. Thus, as an IOL is advanced through passage 214, the IOL is folded due to the shape of the passage 214. The end 25 of the passage 214 may be the injection point through which the lens is inserted into an eye. Typically, larger forces occur as the IOL nears end 213*b* of the IOL insertion cartridge 200 due to the IOL being folded substantially therein. In certain implementations, IOL insertion cartridge 200 may be molded as a single piece from any suitable thermoplastic. For example, in some instances, the IOL insertion cartridge 200 may be formed from polypropylene. However, the disclosure is not so limited, and the IOL insertion cartridge may be formed from any suitable material. In some implementations, the material forming the IOL insertion cartridge 200 may contain a lubricity enhancing agent. Although FIG. 2 illustrates one implementation of an IOL insertion cartridge, other implementations may include 40 fewer, additional, and/or a different arrangement of components. In some implementations, for example, body 210 may not include wings 217. Additionally, passage 214 may have a symmetrical bore. For example, the passage 214 may have a round or elliptical bore. Returning to system 100, as end 122a of plunger 120 is moved toward shell 110, IOL interface 124 advances an IOL through the IOL insertion cartridge, such as IOL insertion cartridge 200. As end 122a is moved toward shell 110, second end 128b of sleeve 127 engages a portion of shell 50 110, as shown in FIG. 1B. As mentioned previously, this may, for example, be defined so as to occur when the IOL is entering or in the tip of an IOL insertion cartridge. When the second end 128b of sleeve 127 engages shell 110, sleeve 127 may begin to provide force feedback to the 55 user. As the user continues to advance end 122a toward shell 110, deformation of the sleeve 127 may provide additional force feedback. If the amount of force feedback being provided by the IOL should suddenly decrease, sleeve 127 may continue to provide force feedback, although possibly at a lower level than that of the IOL and the sleeve 127 combined. Consequently, the resistance provided by deformation of the sleeve 127 prevents a sudden advancement of the plunger 120 and, thereby, prevents the folded IOL from being rapidly introduced into the eye. Thus, the sleeve 127 aids in preventing injury to the eye. Further, the resistance provided by deformation of sleeve 127 provides for 6 enhanced control of the IOL folding and insertion process, particularly when resistance due to folding of the IOL ceases FIG. 3 illustrates an example deformation for sleeve 127. As illustrated, first end 122a of plunger 120 has been advanced towards shell 110 beyond the point at which second end 128b engages the shell 110, which causes plunger 120 to advance further through passage 114 and moves second end 122b away from shell 110. Because of this advancement, sleeve 127 is compressed between annular ring 126 and annular ring 116. Compression of the sleeve 127 causes dimensions of the sleeve 127 to alter. For example, in the illustrated example, the compression of sleeve 127 has caused the cross-sectional width of the sleeve 127 to increase and its outer surface to wrinkle or otherwise distort. In certain implementations, the cross-sectional size of sleeve 127 may not appreciably change due to compression. This may, for example, occur if the sleeve 127 is made of foam. Additionally, in some implementations the sleeve 127 may bulge (e.g., along its surface) or otherwise distort while being deformed by compression. In some implementations, a reduction in the amount of force being applied to advance plunger 120 through passage 114 may cause the sleeve 127 to retain its then-current shape. Thus, the plunger 120 may remain in its current position even if a decrease in advancement force occurs, which may prevent the user from having to constantly apply a particular force to prevent the plunger 120 from retracting from shell 110. In certain implementations, the sleeve 127 may maintain its shape even if the amount of advancement force is reduced to zero. Thus, the plunger 120 may remain at the same location relative to the shell 110 after removal of the advancement force as the location occupied just prior to removal of such force. This characteristic allows the user, for example, to remove or otherwise reposition his hand relative to the plunger 120 without concern for the plunger 120
retracting from the shell 110 in the direction of arrow 131 (shown in FIG. 1A). In some implementations, the sleeve 127 may expand after a user reduces the amount of advancement force being applied. However, any such expansion may be a relatively small amount. System 100 provides a variety of features. For example, system 100 allows an insertion system to provide force feedback as an IOL is prepared for insertion into an eye. This may assist in counteracting sudden changes in resistance of the IOL and uncontrolled advancement, which can result, and avoid improper insertion of the IOL and damage to eye tissue. Moreover, the feedback may occur automatically, with no end user actions, which can ease burden on the user. Additionally, as opposed to devices utilizing springs to provide resistance to advancement of the plunger, system 100 can allow a user to reduce the force being applied to the plunger 120 without fear of the plunger rebounding out of or retracting from the shell. For example, a user may release or otherwise reduce an applied force to the plunger 120 in order to manipulate another instrument. In contrast, a compressed spring, by design, provides a reaction force requiring the user to continually exert an equal and opposing force to prevent an undesirable retraction of the plunger during delivery of the lens. Thus, any reduction in force causes the plunger to rebound out of or retract from the shell as a result of the force of the spring. Moreover, the sleeve 127 may provide a more glove-friendly system as compared to a spring system, which can snag and tear surgical gloves. Furthermore, the sleeve 127 may be easy to manufacture and very reliable. IOL injection systems that use interference fits between components to influence the rate of plunger advancement can provide be very erratic in practice, and the tight dimensional tolerances require increased manufacturing costs. Moreover, tight control of manufacturing processes over time is also required in order to maintain the 5 product dimensional specifications, further increasing manufacturing costs. System 100 is also generally usable with pre-loaded and manually loaded IOL insertion cartridges. Moreover, the tips of the cartridges may have various shapes. For example, 10 cartridge tips may have an oval, circular, elliptical, or any other suitable shape. Generally, a cartridge tip may have an oval, circular, or elliptical shape as these shapes are highly compatibility with the incision formed in the eye. Although FIGS. 1A-B illustrate one implementation of a plunger system for IOL surgery, other implementations may include fewer, additional, and/or a different arrangement of components. For example, a plunger system may not include annular ring 116 or annular ring 126. In such examples, the sleeve 127 may be compressed between different features of 20 the plunger system. As another example, body 121 may not be a cylinder. For instance, body 121 could be a cylinder. As a further example, IOL interface 124 may not be rectangular in cross section. For example, in some instances, the IOL interface may have an elliptical, oval, or any other suitable 25 shape. In certain implementations, sleeve 127 may be located at other areas of plunger system 100. For example, sleeve 127 could be located away from end 122a. For example, in some instances, the sleeve 127 may be located at a position toward 30 end 122b. As another example, some or all of sleeve 127 could be located inside shell 110. In particular implementations, the sleeve 127 may be around the plunger 120 (e.g., when some or all of the deformable material is located inside the shell), but not engage the plunger 120 until it has been 35 advanced. In some implementations, sleeve 127 may have an accordion design, and the inside of shell 110 may assist in ensuring the sleeve 127 folds in a desired manner. In certain implementations, plunger system 100 may be designed for a single use. For example, sleeve 127 may be 40 retained within shell 110 as plunger 120 advances so that the deformable material cannot retract. FIG. 4 illustrates an example process 400 for using a plunger system for intraocular lens surgery. Process 400 may, for instance, be performed using a plunger system 45 similar to plunger system 100. Process 400 includes positioning an IOL in an IOL insertion cartridge (operation 404). The IOL insertion cartridge may, for example, be similar to IOL insertion cartridge 200. Process 400 also includes engaging a plunger of a plunger system with the IOL (operation 408). The plunger may, for example, be engaged with the IOL by advancing the tip of the plunger until it touches the IOL. Process **400** further includes advancing the IOL relative to 55 the IOL insertion cartridge using the plunger (operation **412**). For example, the plunger may be advanced relative to the shell of the plunger system, which may move the IOL in the IOL insertion cartridge. The IOL may be folded by advancement through the IOL insertion cartridge. As the IOL is moved relative to the IOL insertion cartridge, a deformable sleeve around the plunger may engage the plunger and the shell. As the plunger is advanced through the shell, the sleeve provides force feedback as the sleeve is compressed or otherwise deformed due to interaction with 65 the plunger and shell (operation 416). In some instances, the deformable sleeve may be engaged with only one of the 8 plunger or the shell at the beginning of the advancement and then brought into engagement with the other due to the advancement. Process 400 also includes further advancing the IOL relative to the IOL insertion cartridge using the plunger (operation 420). The additional advancement may further fold the IOL and deform the sleeve, which may provide more force feedback. Process 400 additionally includes injecting the IOL into an eye (operation 424). For example, the IOL may be injected when it reaches the end of the IOL insertion cartridge. Although process 400 illustrates one example of a process for using a plunger system for IOL surgery, other processes for using a plunger system for IOL surgery may include fewer, additional, and or a different arrangement of operations. For example, a process may not include positioning the IOL in the IOL insertion cartridge. The IOL may, for instance, have been pre-positioned in the IOL insertion cartridge. As another example, a process may call for engaging the plunger system with the IOL insertion cartridge. The various implementations discussed and mentioned herein have been used for illustrative purposes only. The implementations were chosen and described in order to explain the principles of the disclosure and the practical application and to allow those of ordinary skill in the art to understand the disclosure for various implementations with various modifications as are suited to the particular use contemplated. Thus, the actual physical configuration of components may vary. For example, the mentioned size(s) of components and their illustrated sizing relative to each other may vary based on application. Moreover, the shapes of one or more components may vary depending on application. Thus, the illustrative implementations should not be construed as defining the only physical size, shape, and relationship of components. The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting. As used herein, the singular form "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in the this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups therefore. The corresponding structure, materials, acts, and equivalents of all means or steps plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present implementations has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the implementations in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. A number of implementations have been described for a plunger system for intraocular lens surgery, and several others have been mentioned or suggested. Moreover, those skilled in the art will readily recognize that a variety of additions, deletions, modifications, and substitutions may be made to these implementations while still providing a plunger system for intraocular lens surgery. Thus, the scope of the protected subject matter should be judged based on the following claims, which may capture one or more concepts of one or more implementations. The invention claimed is: - 1. A system for intraocular lens surgery, the system comprising: - a shell comprising an outer wall and an inner wall, the inner wall defining a passage through the shell; - a plunger adapted to move within the passage, the plunger comprising: - a first end adapted to be engaged by a user for advanc- 10 ing the plunger within the passage; and - a second end comprising an intraocular lens interface; and - a deformable sleeve disposed around the plunger, the deformable sleeve adapted to engage with the shell and 15 the plunger to provide force feedback in response to advancement of the plunger through the passage, the force feedback being too small to cause retraction of the plunger, wherein a distal end of the deformable sleeve is spaced apart along the plunger from the 20 second
end of the plunger. - 2. The system of claim 1, wherein the deformable sleeve is engaged with the plunger and moves therewith while not engaged with the shell. - 3. The system of claim 2, wherein the deformable sleeve 25 is adapted to engage with the outer wall of the shell as the plunger is moved through the passage. - **4**. The system of claim **2**, wherein the deformable sleeve is adapted to engage with the inner wall of the shell as the plunger is moved through the passage. - 5. The system of claim 1, wherein at least a portion of the deformable sleeve engages the shell, and the deformable sleeve engages with the plunger as the plunger is advanced through the passage. - 6. The system of claim 5, wherein the deformable sleeve 35 engages the inner wall of the shell. - 7. The system of claim 1, wherein the deformable sleeve comprises silicone. - **8**. The system of claim **1**, further comprising an injection cartridge comprising a portion adapted to fold the intraocu- 40 lar lens as it passes therethrough, wherein the deformable sleeve is adapted to begin providing force feedback when the intraocular lens is in the folding portion. - **9**. The system of claim **1**, wherein the deformable sleeve includes at least one of: cavities, protuberances, grooves, 45 and fold lines. - 10. The system of claim 1, wherein the deformable sleeve engages an annular ring of the outer wall. - 11. A system for intraocular lens surgery, the system comprising: - a shell comprising an outer wall and an inner wall, the inner wall defining a passage through the shell; - a plunger adapted to move within the passage, the plunger comprising: - a first end adapted to be engaged by a user for advanc- 55 ing the plunger within the passage; and - a second end comprising an intraocular lens interface; and - a deformable sleeve disposed around the plunger, the deformable sleeve adapted to engage with the shell and 60 the plunger to provide force feedback in response to advancement of the plunger through the passage, wherein a distal end of the deformable sleeve is spaced 10 apart along the plunger from of the second end of the plunger; wherein the deformable sleeve is adapted to substantially maintain its shape if an applied force is removed from the plunger, the shape of the deformable sleeve being the shape at the instant the applied force is removed. #### **12**. A method comprising: engaging a plunger with an intraocular lens; - moving a first end of the plunger towards a shell to advance the intraocular lens relative to an intraocular lens insertion cartridge, the shell comprising an inner portion and an outer portion; - engaging a deformable sleeve with the outer portion of the shell and the plunger, the deformable sleeve being spaced apart along the plunger from a second end of the plunger, the second end comprising the intraocular lens insertion cartridge, the engaged deformable sleeve providing force feedback to advancement of the plunger relative to the shell, the force feedback being too small to cause retraction of the plunger; and - advancing the IOL relative to the IOL insertion cartridge with the deformable sleeve providing force feedback. - 13. The method of claim 12, further comprising positioning the intraocular lens in the insertion cartridge. - 14. The method of claim 12, further comprising injecting the intraocular lens into an eye. - 15. The method of claim 12, further comprising decreasing the force applied to move the plunger towards the shell, wherein the deformable sleeve substantially maintains its shape so as not to cause the plunger to rebound away from the shell. - 16. The method of claim 12, wherein compression of the deformable sleeve squeezes air out of pockets of the deformable sleeve. - 17. The method of claim 12, wherein a distal end of the deformable sleeve is located away from a proximal end of the plunger. - **18**. A system for intraocular lens surgery, the system comprising: - a shell comprising an outer portion with an outer wall and comprising an inner wall, the inner wall defining a passage through the shell; - a plunger adapted to move within the passage, the plunger comprising: - a first end adapted to be engaged by a user for advancing the plunger within the passage; and - a second end comprising an intraocular lens interface; - a deformable sleeve spaced apart along the plunger from the second end of the plunger, the deformable sleeve adapted to engage with the outer portion of the shell and the plunger to provide force in response to advancement of the plunger through the passage, the force feedback being too small to cause retraction of the plunger. - 19. The system of claim 18, wherein a distal end of the deformable sleeve is proximal to the second end of the plunger. - 20. The system of claim 18, wherein the deformable sleeve is adapted to engage an annular ring of the outer wall of the shell. * * * * *